Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development.

نویسندگان

  • J Gerhart
  • M Danilchik
  • T Doniach
  • S Roberts
  • B Rowning
  • R Stewart
چکیده

We first review cortical-cytoplasmic rotation, a microtubule-mediated process by which the Xenopus egg, like other amphibian eggs, transforms its polarized cylindrical symmetry into bilateral symmetry within the first cell cycle after fertilization. This transformation, the earliest of many steps leading to dorsal development, involves the displacement of the egg's cortex relative to its cytoplasmic core by 30 degrees in an animal-vegetal direction. As rotation is progressively reduced by microtubule-depolymerizing agents, embryos develop with body axes progressively deleted for dorsal structures at the anterior end. With no rotation, ventralized embryos are formed. In an effort to comprehend this progressive effect on embryonic organization, we go on to review subsequent developmental process depending on rotation, and we propose, with evidence, that reduced rotation leads to a reduced number of vegetal dorsalizing cells, which induce during the blastula stage a Spemann organizer region of smaller than normal size. The reduced organizer then promotes a reduced amount of cell rearrangement (morphogenesis) at gastrulation. Reduced morphogenesis seems the proximate cause of the incompleteness of axial pattern, as shown further by the fact that embryos that are normal until the gastrula stage, if exposed to inhibitors of morphogenesis, develop body axes that are progressively less complete in their anterior dorsal organization the earlier their gastrulation had been blocked. We discuss why axial pattern might depend systematically on morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of dorsal development by contact between the cortical dorsal determinant and the equatorial core cytoplasm in eggs of Xenopus laevis.

In eggs of Xenopus laevis, dorsal development is activated on the future dorsal side by cortical rotation, after fertilization. The immediate effect of cortical rotation is probably the transport of a dorsal determinant from the vegetal pole to the equatorial region on the future dorsal side. However, the identity and action of the dorsal determinant remain problematic. In the present experimen...

متن کامل

Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.

Specification of the dorsoventral axis is a subject of great importance in amphibian embryogenesis. We have found that cytoplasm of the vegetal dorsal cells of a 16-cell embryo of Xenopus laevis, when injected into the ventral vegetal cells of a recipient at the same stage, can induce formation of a second axis. In the present experiments,using the same assay procedure, we found that the cytopl...

متن کامل

Deep cytoplasmic rearrangements during early development in Xenopus laevis.

The egg of the frog Xenopus is cylindrically symmetrical about its animal-vegetal axis before fertilization. Midway through the first cell cycle, the yolky subcortical cytoplasm rotates 30 degrees relative to the cortex and plasma membrane, usually toward the side of the sperm entry point. Dorsal embryonic structures always develop on the side away from which the cytoplasm moves. Details of the...

متن کامل

Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction

Patterning events that occur before the mid-blastula transition (MBT) and that organize the spatial pattern of gene expression in the animal hemisphere have been analyzed in Xenopus embryos. We present evidence that genes that play a role in dorsoventral specification display different modes of activation. Using early blastomere explants (16-128-cell stage) cultured until gastrula stages, we de...

متن کامل

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 107 Suppl  شماره 

صفحات  -

تاریخ انتشار 1989